Multiple Imputation for General Missing Data Patterns in the Presence of High-dimensional Data

Yi Deng¹, Changgee Chang¹, Moges Ido², and Qi Long^{1,*}

Supplementary Methods

Method S1: Details of MICE-DURR for three types of data Method S2: Details of MICE-IURR for three types of data

Method S1: Details of MICE-DURR for three types of data

We start the iterative procedure with some initial values. For example, all the elements in $\mathbf{z}_{mis,j}$ are filled in with the average of the observed values of \mathbf{z}_j (j = 1, 2, ..., l). Define the corresponding initial completed dataset as $\mathbf{Z}^{(0)}$. In the m-th iteration:

(i) If \mathbf{z}_i follows a Gaussian distribution, the model is

$$\mathbf{z}_{j,obs}^* = \theta_{0,j} \mathbf{1}_{r_j^*} + \mathbf{W}_{j,obs}^{*(m)} \theta_j + \varepsilon_j, \tag{1}$$

where r_j^* is the number of cases with observed \mathbf{z}_j^* and $\varepsilon_j \sim N(0, \sigma_j^2 \mathbf{I}_{r_j^*})$.

A regularized regression method is used to fit model (1). The parameter estimates can be obtained as follows:

$$(\widehat{\boldsymbol{\theta}}_{0,j}^{(m)}, \widehat{\boldsymbol{\theta}}_{j}^{(m)}) = \underset{(\boldsymbol{\theta}_{0,i},\boldsymbol{\theta}_{j})}{\operatorname{argmin}} [-\ell(\boldsymbol{\theta}_{0,j},\boldsymbol{\theta}_{j}; \mathbf{z}_{j,obs}^{*}, \mathbf{W}_{j,obs}^{*(m)}) + P_{\lambda}(\boldsymbol{\theta}_{j})]$$

Where $P_{\lambda}(\theta_j)$ is a regularization function. We consider the mean of squared residuals as an estimate of σ_j^2 , denoted by $\widehat{\sigma}_i^{2(m)}$.

 $\mathbf{z}_{j,mis}$ is predicted with $\mathbf{z}_{j,mis}^{(m)}$ by drawing randomly from the predictive distribution $N(\widehat{\boldsymbol{\theta}}_{0,j}^{(m)}\mathbf{1}_{n-r_j}+\mathbf{W}_{j,mis}^{(m)}\widehat{\boldsymbol{\theta}}_{j}^{(m)},\widehat{\boldsymbol{\sigma}}_{j}^{2(m)}\mathbf{I}_{n-r_j})$. Let $\mathbf{z}_{j}^{(m)}=(\mathbf{z}_{j,mis}^{(m)},\mathbf{z}_{j,obs})$.

(ii) If \mathbf{z}_i follows a Bernoulli distribution, the model is

$$logit(\mathbf{z}_{j,obs}^* = 1 | \mathbf{W}_{j,obs}^{*(m)}) = \theta_{0,j} \mathbf{1}_{r_j^*} + \mathbf{W}_{j,obs}^{*(m)} \theta_j,$$
(2)

A regularized regression method is used to fit model (2). The parameter estimates can be obtained as follows:

$$(\widehat{\boldsymbol{\theta}}_{0,j}^{(m)}, \widehat{\boldsymbol{\theta}}_{j}^{(m)}) = \underset{(\boldsymbol{\theta}_{0,j}, \boldsymbol{\theta}_{j})}{\operatorname{argmin}} [-\ell(\boldsymbol{\theta}_{0,j}, \boldsymbol{\theta}_{j}; \mathbf{z}_{j,obs}^{*}, \mathbf{W}_{j,obs}^{*(m)}) + P_{\lambda}(\boldsymbol{\theta}_{j})]$$

Where $P_{\lambda}(\theta_i)$ is a regularization function.

 $\mathbf{z}_{j,mis} \text{ is predicted with } \mathbf{z}_{j,mis}^{(m)} \text{ by drawing randomly from the predictive distribution } \underbrace{Bernoulli}(\frac{exp(\widehat{\theta}_{0,j}^{(m)}\mathbf{1}_{n-r_j} + \mathbf{W}_{j,mis}^{(m)}\widehat{\theta}_j^{(m)})}{1 + exp(\widehat{\theta}_{0,j}^{(m)}\mathbf{1}_{n-r_j} + \mathbf{W}_{j,mis}^{(m)}\widehat{\theta}_j^{(m)})}).$ Let $\mathbf{z}_j^{(m)} = (\mathbf{z}_{i,mis}^{(m)}, \mathbf{z}_{j,obs}).$

¹Department of Biostatistics and Bioinformatics, Emory University, Atlanta, 30322, USA

²Georgia Department of Public Health, 30303, USA

^{*}Correspondence: qlong@emory.edu

(iii) If \mathbf{z}_i follows a Poisson distribution, the model is

$$log(\mathbf{E}[\mathbf{z}_{j,obs}^{*}|\mathbf{W}_{j,obs}^{*(m)}]) = \theta_{0,j}\mathbf{1}_{r_{i}^{*}} + \mathbf{W}_{j,obs}^{*(m)}\boldsymbol{\theta}_{j}, \tag{3}$$

A regularized regression method is used to fit model (3). The parameter estimates can be obtained as follows:

$$(\widehat{\boldsymbol{\theta}}_{0,j}^{(m)}, \widehat{\boldsymbol{\theta}}_{j}^{(m)}) = \underset{(\boldsymbol{\theta}_{0,j}, \boldsymbol{\theta}_{j})}{\operatorname{argmin}} [-\ell(\boldsymbol{\theta}_{0,j}, \boldsymbol{\theta}_{j}; \mathbf{z}_{j,obs}^{*}, \mathbf{W}_{j,obs}^{*(m)}) + P_{\lambda}(\boldsymbol{\theta}_{j})]$$

Where $P_{\lambda}(\theta_i)$ is a regularization function.

 $\mathbf{z}_{j,mis}$ is predicted with $\mathbf{z}_{j,mis}^{(m)}$ by drawing randomly from the predictive distribution

$$Poisson(exp(\widehat{\boldsymbol{\theta}}_{0,j}^{(m)}\mathbf{1}_{n-r_j} + \mathbf{W}_{j,mis}^{(m)}\widehat{\boldsymbol{\theta}}_{j}^{(m)})). \text{ Let } \mathbf{z}_{j}^{(m)} = (\mathbf{z}_{j,mis}^{(m)}, \mathbf{z}_{j,obs}).$$

We denote the updated data set after the m-th interation by $\mathbf{Z}^{(m)}$ and repeat the procedures iteratively. After the algorithm converges, the last M imputed data sets after appropriate thinning are chosen for subsequent standard complete-data analysis.

Method S2: Details of MICE-IURR for three types of data

We start the iterative procedure with some initial values. For example, all the elements in $\mathbf{z}_{mis,j}$ are filled in with the average of the observed values of \mathbf{z}_j (j = 1, 2, ..., l). Define the corresponding initial completed dataset as $\mathbf{Z}^{(0)}$. In the m-th iteration:

(i) If \mathbf{z}_j follows a Gaussian distribution, we use a regularized regression method to fit a multiple linear regression model regarding $\mathbf{z}_{j,obs}$ as the outcome variable and $\mathbf{W}_{j,obs}^{(m)}$ as the predictor variable, and identify the active set, $\widehat{\mathcal{F}}_j^{(m)}$. Let $\mathbf{W}_{\widehat{\mathcal{F}}_j^{(m)}}$ denote the subset of $\mathbf{W}_j^{(m)}$ that only contains the active set. Correspondingly, denote two components of $\mathbf{W}_{\widehat{\mathcal{F}}_j^{(m)}}$ by $\mathbf{W}_{\widehat{\mathcal{F}}_j^{(m)},obs}$ and $\mathbf{W}_{\widehat{\mathcal{F}}_j^{(m)},obs}$. Then the model is

$$\mathbf{z}_{j,obs} = \boldsymbol{\theta}_{0,j} \mathbf{1}_{r_j} + \mathbf{W}_{\widehat{\mathcal{S}}_i^{(m)},obs} \boldsymbol{\theta}_j + \boldsymbol{\varepsilon}_j, \tag{4}$$

where $\varepsilon_j \sim N(0, \sigma_j^2 \mathbf{I}_{r_j})$ and $\mathbf{1}_{r_j}$ is a vector of length r_j with all entries one.

Approximate the distribution of $(\theta_{0,j}, \theta_j, \sigma_j^2)$ by using a standard inference procedure such as maximum likelihood.

$$(\theta_{0,j},\theta_j,\sigma_j^2)' \sim N(\widehat{\theta}_{MLE}^{(m)},\widehat{\Sigma}_{MLE}^{(m)})$$

Where $\widehat{\theta}_{MLE}^{(m)}$ is the MLE of parameters in model (4) and $\widehat{\Sigma}_{MLE}^{(m)}$ is the variance-covariance matrix of the estimated parameters.

Generate a prediction for $\mathbf{z}_{j,mis}$: randomly draw $(\widehat{\theta}_{0,j}^{(m)}, \widehat{\theta}_{j}^{(m)}, \widehat{\sigma}_{j}^{2(m)})$ from $N(\widehat{\theta}_{MLE}^{(m)}, \widehat{\Sigma}_{MLE}^{(m)})$, and predict $\mathbf{z}_{j,mis}$ with $\mathbf{z}_{j,mis}^{(m)}$ by drawing randomly from the predictive distribution $N(\widehat{\theta}_{0,j}^{(m)} \mathbf{1}_{n-r_j} + \mathbf{W}_{\widehat{\mathscr{S}}_{j}^{(m)},mis} \widehat{\theta}_{j}^{(m)}, \widehat{\sigma}_{j}^{2(m)} \mathbf{I}_{n-r_j})$. Let $\mathbf{z}_{j}^{(m)} = (\mathbf{z}_{j,mis}^{(m)}, \mathbf{z}_{j,obs})$.

(ii) If \mathbf{z}_j follows a Bernoulli distribution, we use a regularized regression method to fit a multiple linear regression model regarding $\mathbf{z}_{j,obs}$ as the outcome variable and $\mathbf{W}_{j,obs}^{(m)}$ as the predictor variable, and identify the active set, $\widehat{\mathcal{F}}_j^{(m)}$. Let $\mathbf{W}_{\widehat{\mathcal{F}}_j^{(m)}}$ denote the subset of $\mathbf{W}_j^{(m)}$ that only contains the active set. Correspondingly, denote two components of $\mathbf{W}_{\widehat{\mathcal{F}}_j^{(m)},obs}$ and $\mathbf{W}_{\widehat{\mathcal{F}}_j^{(m)},obs}$. Then the model is

$$logit(\Pr(\mathbf{z}_{j,obs} = 1 | \mathbf{W}_{\widehat{\mathcal{S}}_{i}^{(m)},obs})) = \boldsymbol{\theta}_{0,j} \mathbf{1}_{r_{j}} + \mathbf{W}_{\widehat{\mathcal{S}}_{i}^{(m)},obs} \boldsymbol{\theta}_{j}, \tag{5}$$

Approximate the distribution of $(\theta_{0,j}, \theta_j)$ by using a standard inference procedure such as maximum likelihood.

$$(\theta_{0,j},\theta_j)' \sim N(\widehat{\theta}_{MLE}^{(m)},\widehat{\Sigma}_{MLE}^{(m)})$$

Where $\widehat{\theta}_{MLE}^{(m)}$ is the MLE of parameters in model (5) and $\widehat{\Sigma}_{MLE}^{(m)}$ is the variance-covariance matrix of the estimated parameters.

Generate a prediction for $\mathbf{z}_{j,mis}$: randomly draw $(\widehat{\theta}_{0,j}^{(m)}, \widehat{\theta}_{j}^{(m)})$ from $N(\widehat{\theta}_{MLE}^{(m)}, \widehat{\Sigma}_{MLE}^{(m)})$, and predict $\mathbf{z}_{j,mis}$ with $\mathbf{z}_{j,mis}^{(m)}$ by drawing randomly from the predictive distribution

$$Bernoulli(\frac{exp(\widehat{\boldsymbol{\theta}}_{0,j}^{(m)}\mathbf{1}_{n-r_j}+\mathbf{W}_{\widehat{\mathcal{T}}_{j}^{(m)},mis}\widehat{\boldsymbol{\theta}}_{j}^{(m)})}{1+exp(\widehat{\boldsymbol{\theta}}_{0,j}^{(m)}\mathbf{1}_{n-r_j}+\mathbf{W}_{\widehat{\mathcal{T}}_{j}^{(m)},mis}\widehat{\boldsymbol{\theta}}_{j}^{(m)})}). \text{ Let } \mathbf{z}_{j}^{(m)}=(\mathbf{z}_{j,mis}^{(m)},\mathbf{z}_{j,obs}).$$

(iii) If \mathbf{z}_j follows a Poisson distribution, we use a regularized regression method to fit a multiple linear regression model regarding $\mathbf{z}_{j,obs}$ as the outcome variable and $\mathbf{W}_{j,obs}^{(m)}$ as the predictor variable, and identify the active set, $\widehat{\mathcal{F}}_j^{(m)}$. Let $\mathbf{W}_{\widehat{\mathcal{F}}_j^{(m)}}$ denote the subset of $\mathbf{W}_j^{(m)}$ that only contains the active set. Correspondingly, denote two components of $\mathbf{W}_{\widehat{\mathcal{F}}_j^{(m)},obs}$. Then the model is

$$log(\mathbf{E}[\mathbf{z}_{j,obs}|\mathbf{W}_{\widehat{\mathscr{S}}_{i}^{(m)},obs}]) = \theta_{0,j}\mathbf{1}_{r_{j}} + \mathbf{W}_{\widehat{\mathscr{S}}_{i}^{(m)},obs}\theta_{j},$$

$$\tag{6}$$

Approximate the distribution of $(\theta_{0,j}, \theta_j)$ by using a standard inference procedure such as maximum likelihood.

$$(\theta_{0,j},\theta_j)' \sim N(\widehat{\theta}_{MLE}^{(m)},\widehat{\Sigma}_{MLE}^{(m)})$$

Where $\widehat{\theta}_{MLE}^{(m)}$ is the MLE of parameters in model (6) and $\widehat{\Sigma}_{MLE}^{(m)}$ is the variance-covariance matrix of the estimated parameters.

Generate a prediction for $\mathbf{z}_{j,mis}$: randomly draw $(\widehat{\theta}_{0,j}^{(m)}, \widehat{\theta}_{j}^{(m)})$ from $N(\widehat{\theta}_{MLE}^{(m)}, \widehat{\Sigma}_{MLE}^{(m)})$, and predict $\mathbf{z}_{j,mis}$ with $\mathbf{z}_{j,mis}^{(m)}$ by drawing randomly from the predictive distribution

$$Poisson(exp(\widehat{\boldsymbol{\theta}}_{0,j}^{(m)}\mathbf{1}_{n-r_j}+\mathbf{W}_{\widehat{\mathcal{S}}_{i}^{(m)},mis}\widehat{\boldsymbol{\theta}}_{j}^{(m)})). \text{ Let } \mathbf{z}_{j}^{(m)}=(\mathbf{z}_{j,mis}^{(m)},\mathbf{z}_{j,obs}).$$

We denote the updated data set after the m-th interation by $\mathbf{Z}^{(m)}$ and repeat the procedures iteratively. After the algorithm converges, the last M imputed data sets after appropriate thinning are chosen for subsequent standard complete-data analysis.